

$$\frac{\int (x)^2 \frac{1}{x^2-9}}{\int x^2-9} = x^2-9 \neq 0 \quad x \neq \pm 3$$
Domain: $(-0,-3)U(-3,3)U(3,0)$

$$\frac{\int (-x)^2 \frac{1}{(-x)^2-9}}{\int (-x)^2-9}$$
V.A. $x=3$, $x=-3$

$$\frac{1}{x^2-9} = \frac{1}{x^2-9}$$
No $x-1$ nt since $S(x)\neq 0$

$$\frac{1}{S(x)} = (x^2-9)^{-1}$$

$$\frac{1}{S(x)} = (x^2-9)^{-1}$$

$$\frac{1}{S(x)} = -2x = -2x$$
Symmetric to $x=x=3$

$$\frac{1}{S(x)} = -2x = -2x$$
Symmetric to $x=x=3$

$$\frac{1}{S(x)} = -2x = -2x$$

$$\frac{1}{(x^2-9)^2} = -2x$$
Symmetric to $x=x=3$

$$\frac{1}{S(x)} = -2x = -2x$$

$$\frac{1}{(x^2-9)^2} = -2x = -2x$$

$$\frac{1}{(x^2-9)^2}$$

$$\int_{(x)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{9} = 0$$

$$\int_{(0)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{9} = 0$$

$$\int_{(0)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{9} = 0$$

$$\int_{(0)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{x^{2}+9} = 0$$

$$\int_{(0)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{x^{2}+9} = 0$$

$$\int_{(0)}^{2} \frac{x^{2}}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{9}{x^{2}+9} = \frac{x^{2}}{x^{2}+9} = \frac{9}{x^{2}+9}$$

$$\int_{(0)}^{2} \frac{1}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{1}{x^{2}+9} = \frac{x^{2}}{x^{2}+9} = \frac{9}{x^{2}+9}$$

$$\int_{(0)}^{2} \frac{1}{x^{2}+9} \qquad \int_{(0)}^{2} \frac{1}{x^{2}+9} = \frac{x^{2}}{x^{2}+9} = \frac{9}{x^{2}+9}$$

$$\int_{(0)}^{2} \frac{1}{x^{2}+9} = \frac{1}{x^{2}+9} = \frac{1}{x^{2}+9}$$

$$\int_{(0)}^{2} \frac{1}{x^{2}+9} = \frac{1}{x^{2}+9} = \frac{1}{x^{2}+9}$$

$$\int_{(0)}^{2} \frac{1}{x^{2}+9} = \frac{1}{$$

