Math 261
 Fall 2022 Lecture 30

Given $f(x)=2+3 x^{2}-x^{3}$
$f(0)=2 \checkmark$
$f^{\prime}(x)=6 x-3 x^{2}$
$f(x)$ is polynomial
$f^{\prime}(x)=3 x(2-x)$
Domain ($-\infty, \infty$)

$$
\begin{aligned}
& f^{\prime}(x)=0 \rightarrow \quad x=0 \quad x=2 \\
& f(0)=2^{2}, f(2)=6
\end{aligned}
$$

Cont. everywhere
$f^{\prime \prime}(x)=6-6 x$
$f^{\prime \prime}(x)=0 \rightarrow x=1$
$f(1)=4$

$$
f(x)=\frac{1}{x^{2}-9} \longmapsto x^{2}-9 \neq 0 \quad x \neq \pm 3
$$

Domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty) \quad f(-x)=\frac{1}{(-x)^{2}-9}$ V.A. $x=3, x=-3$

No x-Int since $f(x) \neq 0$

$$
=\frac{1}{x^{2}-9}
$$

$$
r \text {-Int }\left(0, \frac{-1}{9}\right)
$$

$$
\frac{r \text { - Int }\left(0,-\frac{1}{9}\right)}{0}
$$

$$
=f(x)
$$

$$
f(x)=\left(x^{2}-9\right)_{-2}^{-1}
$$

$$
f(-x)=f(x) \rightarrow \text { even }
$$

$$
\begin{aligned}
& f(x)=(x-9) \\
& f^{\prime}(x)=-1\left(x^{2}-9\right)^{-2} \cdot 2 x=\frac{-2 x}{\left(x^{2}-9\right)^{2}}
\end{aligned}
$$

$$
f^{\prime}(x)=0 \rightarrow x=0
$$

$f^{\prime}(x)$ undefined at $x= \pm 3$

$$
\begin{aligned}
& f^{\prime}(x)=-2 x\left(x^{2}-9\right)^{-2} \quad f^{\prime \prime}(x)=-2\left[1\left(x^{2}-9\right)^{-2}+x \cdot-2\left(x^{2}-9\right)^{-2} \cdot 2 x\right] \\
& f^{\prime \prime}(x)=-2\left(x^{2}-9\right)^{-3}\left[\left(x^{2}-9\right)^{1}-4 x^{2}\right] \\
& f^{\prime \prime}(x)=\frac{-2\left(-3 x^{2}-9\right)}{\left(x^{2}-9\right)^{3}}=\frac{6\left(x^{2}+3\right)}{\left(x^{2}-9\right)^{3}} \\
& f^{\prime \prime}(x) \neq 0, \quad f^{\prime \prime}(x) \text { is undefined @ } x= \pm 3 .
\end{aligned}
$$

$\left.\begin{array}{|l|lllllll|}\hline x & -\infty & -3 & 0 & 3 & \infty \\ f^{\prime}(x) & + & \vdots\end{array}\right)$

